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The radiation pattern of a focused transducer is reexamined. The radiation field is divided into 
an illuminated zone and a shadow zone. A numerically convergent solution of the pressure 
distribution in terms summations of Bessel functions is provided. This solution is 
computationally more advantageous than earlier results where a double or single integral in the 
complex plane is required. The pressure amplitude differs from earlier reports slightly for 
off-axis locations at low frequency. This difference may have significance for backscatter 
coefficient determination where scatterers are assumed present over a time-gated volume. The 
solution for a fiat disk radiator is obtained as a limiting case. 

PACS numbers: 43.20.Rz, 43.20.Tb, 43.20.Ye, 43.88.Yn 

LIST OF SYMBOLS u•', u 2' 
a radius of the active transducer element ¾0, 

c speed of sound in the medium 
f acoustic frequency w 
Gp focusing factor of a focused transducer 
i f-----•, unit of imaginary number x 
/(y,z) Eq. (16) xn, x'n 

Y,Z Jn( ' ) cylindrical Bessel function of order n, and argu- 
ment ( ß ) 
wave number Y',Z' 
pressure distribution 
normalized pressure distribution z 
pressure amplitude on the transducer surface 
total transmitted acoustic power 
the distance from the center of the transducer to z,, z', 
the observation point 
the distance from the point source on the trans- 
ducer to the observation point 
the radius of curvature 00 
the distance from the focus of the transducer to 

the observation point 
time variable 

dummy variable for integration q•o 
the normal velocity amplitude on the transducer 
surface 
first- and second-order Lommel functions of the P0 

first kind, Eq. (19) 

k 

p(r,O) 
p'(r,O) 
Po 

P 

r 

r t 

t 

u0 

Ul, U2 

Eq. (23) 
zeroth- and first-order Lommel function of the 

first kind, Eq. (30) 
distance from the focal point along the boundary 
line 

radial distance from the acoustic axis 

location of pressure nodes in the focal plane 
normalized position of the observation point, Eq. 
(15) 

normalized position of the observation point, Eq. 
(82) 

axial distance from the center of transducer along 
the acoustic axis 

roots of J• (z) 
location of pressure nodes along the axis 
the half-aperture angle 
truncation error 

polar angle of the observation point 
polar angle of the point source relative to the focus 
of the transducer 

polar angle of the observation point relative to the 
focus of the transducer 

azimuthal angle of the point source relative to the 
focus of the transducer 

the velocity potential 
density of the medium 

angular frequency 
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FIG. I. Coordinate systems used for analysis. 

INTRODUCTION 

The radiation pattern of a flat or focused radiator has 
been studied by many authors. For a flat circular trans- 
ducer, the radiation pattern is found by direct integration 
of the Green's function over the face of the transducer, as 
formulated by Rayleigh. This double integration has been 
reduced to a single integration by Stepanishen • and Lock- 
wood and Willette. 2 For a focused transducer, the Ray- 
leigh formula is only an approximation, and this approxi- 
mation is good if the radius of the transducer is larger than 
the wavelength, as O'Neil 3 has pointed out. O'Neil stated 
that the general expression for the off-axis intensity distri- 
bution is complicated and requires the evaluation of a dou- 
ble integral. Penttinen and Luukkala, 4 Madsen et al.,• and 
later Lucas and Muir 6 reduced the solution to a single 
integral. In the solution by Lucas and Muir, 6 the Fresnel 
approximation is used to transform the boundary condition 
on the curved surface into a boundary condition at the 
z=0 plane. The Helmholtz equation is transformed into a 
parabolic equation by using the parabolic approximation. 
Their solution was later expressed in a series solution by 
Cobb. ? 

A numerically convergent solution for the pressure 
distribution of the focused transducer is presented in this 
communication. In Sec. I, a single-integral solution of the 
pressured distribution of a focused transducer is derived 
directly from the Rayleigh formulation. In Sec. II this so- 
lution is reduced to a summation in terms of cylindrical 
Bessel functions by using the Lommel integrals. Alterna- 
tive solutions are provided for different zones of the pres- 
sure field such that the summation converges everywhere 
in the right half-space where the pressure distribution is 
desired. Graphical presentation and discussion of the solu- 
tion is given in Sec. III. The pressure distribution of a flat 
transducer in terms of cylindrical Bessel functions is pro- 
vided as a limiting case of the focused transducer in Sec. 
IV. Some numerical considerations are given in Sec. V. 

I. A SINGLE-INTEGRAL SOLUTION OF THE 
PRESSURE DISTRIBUTION 

The geometry of the focused transducer is shown in 
Fig. 1. The half-aperture angle, a, is determined by the 
radius of the transducer and the radius of curvature as 

a = arcsin a/re. ( 1 ) 

When the size of the transducer is larger than the acoustic 
wavelength (ka> 1), the velocity potential in the right 
half-space can be calculated by the Green's function 
method (the Rayleigh formulation): 

Uo f fseXp(--ikr') ,k(r,O) r' aS, (2) 
where uo is the normal velocity on the transducer face, r' is 
the distance from a point source on the surface of the 
transducer to the point of observation, and integration is 
over the whole surface of the transducer. The time depen- 
dence, exp(iot), has been suppressed. The solution is axis 
symmetric so either polar or cylindrical coordinate system 
can be used. The polar coordinate system with its origin 
located at the center of the transducer will be used in our 

derivation. The distance r', however, is best described by a 
spherical coordinate system with its origin O• located at 
the geometrical focus of the transducer, as shown in Fig. 1. 
Then the observation point r(r, 0) can be expressed as 
(r•,O•,O) in the new coordinate system where 

rcos O=r I cos O•+ro, 
(3) 

rsin O=rl sin 0•. 

A point on the transducer surface can be expressed as 
( ro,Oo,cpo). Then 

r'= [•+•+2r•ro(cos 01 cos 00 

--sin 01 sin 00 cos q•0) ]1/2. (4) 

Eliminating r I and 01 from Eqs. (3) and (4), we find 

r'= P+2• I (1-cos 0o) 
r0 ! 

rsin0 ]}1/2 -- sin 0 0 cos q•o (5) 
ro 

Assuming that r' in the exponent of Eq. (2) can be re- 
placed by the first two terms of its bimodal expansion, 

1 ---- ( 1 --cos 0 o) r'=r+ r ro 

r sin 0 ] -- sin 0 o cos •o +"', (6) 
ro 

and r' in the denominator can be replaced by r (the Fresnel 
approximation), then 

q•(r,O) ----•-•r exp(--ikr) exp --i -- 

X ( l --•o COS O) ( l --cos Oo) [sin Oo dOo 
* exp(ikro sin 01 sin 0o cos q•o)dq•o, 

=0 

(7) 

where dS= • sin 0o doe dq•o has been used. The integration 
over q•o can be accomplished explicitly to give 
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•0 exp(--ikr) exp --i 1 ---- cos 0 
r =0 

X ( ! --cos 00) ]sin Oo*Jo(kro sin 0 sin Oo)dOo. (8) 
Let u= (r0/a)sin 00, then 

1 [a\ 2 2 [ 1 a 2 ,--cosOo=•[•)u[l+•(•)u2+...]. (9, 
Keeping the first term of Eq. {7) only and substituting into 
Eq. {6), we have 

c)(r,O) uøa2 exp(--ikr) exp --i 
r -o 2r 

(r)] X 1 ---- cos 0 u • uJo(ka sin Ou)du. (10) 
r0 

Equation (10) is the integral solution of the velocity po- 
tential in the polar coordinate system. 

The acoustic pressure can be derived from the velocity 
potential by 

O4(r,O) 
P(r'O)=iPø c)t =iPøtøqS(r'O)' (11) 

Define 

po---- poCUo, (12) 

which will be shown later as the power equivalent pressure 
amplitude on the transducer surface, then 

p( r,O) =i(po/uo)k4( r,O). (13) 

Substituting Eq. (10) into Eq. (13), we obtain the pressure 
distribution of the focused transducer as, 

p(r,O) =ipo -•- exp(--ikr) exp --i -- =0 2F 

(r)1 X 1---- cos 0 u • uJo(ka sin Ou)du. (14) 
ro 

From now on we will only discuss the pressure distribution 
given in Eq. (14). 

II. SERIES SOLUTIONS IN TERMS OF BESSEL 
FUNCTIONS 

The solution given in Eq. (14) can be transformed into 
a series solution by using the Lommel integrals. Define 

Y= ( ka2/r) [ 1 - ( r/ro)cos 0], 
(15) 

Z= ka sin 0, 

and 

I(Y,Z):Y fut=o exp(-i•u•)uJo(Zu)du, (16) 
then Eq. (14) is reduced to 

ipo exp(--ikr) 
p(r,O)-- 1--rcos O/to I( Y,Z). (17) 

The two-parameter problem similar to that given in 
Eq. (16) has been discussed in detail by Lommel, s The 
following two equations are given (Eq, 32 in Ref. 8): 

C= cos • (l-u 2) UJo(Zu)du=•u1(Y,Z), =0 

(18) 

s__ fu=0 sin((1 , l 1 -- u ) )UJo(Zu)du ='• u•(Y,Z), 
where 

ut(Y,Z)= •, (--1)"[•) J2n+l(Z), 
(19) 

[ y\ 2n+ • 

n=0 

These equations can be obtained by repeated use of inte- 
gration by parts using 

f : ZnJn_ l(Z)dZ=ZnJnZ). (20) 
Some manipulation of the above equations provides the 
general solution for Eq. (16) as 

I(Y,Z) =exp[ --i( Y/2 ) ] [ut(Y,Z) + iu2( Y,Z) ], 
(21) 

and its amplitude is given by 

II(Y,Z)I ={[ui(Y,Z)]•+[u2(Y,Z)]2} I•. (22) 
It is sometimes more advantageous to use 

[ y\Zn 

u[(Y,Z)= • (--1)n[•) J•+i(Z), n=0 

(23) 

• [ y\2n+l u•(Y,Z)---- (--1)"[) J•n+l(Z), tt=O • 
then Eq. (21 } becomes 

l(Y,Z)=exp --i • [u'•(Y,Z}+iu•(Y,Z)], (24} 
The series u• and u• converges for all values of Y and Z. 
They may converge slowly, however, for some values of Y 
and Z. Observing the ratio of Y/Z=--sin(a)/tan(O•) 
with the help of Eq. (3), we find 

<1, shadow zone (a<O•<•-a), = or > 1, illuminated zone (01<a or O•<•--a). 

Depending on the value of 01, the radiation field is divided 
into two zones, the shadow zone and the illuminat• zone, 
as depict• in Fig. 2. 

&. Solution for the shadow zon• (a<O• <•--a) 

Since I Y/ZI < 1 for a < 0• < •-a, the series given in 
Eq. (22) converg• unifomly, and •. (23) is used di- 
rectly with •. (17) to calculate the pressure distribution 
in the shadow zone. 
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FIG. 2. The definition of illuminated and shadow zones and the boundary 
line for a focused transducer. 

B. Solution on the boundary (0•=a or 0•-----•r-a) 

Since I Y/Z[ = 1 for 0• =a, or 0• =rr--a, the functions 
in Eq. (22) can be expressed explicitly as 

1 

Ul(+Z,Z) = -4- • ( -- l)nJ2n+l(Z) = 4-• sin(Z), n=0 

(26) 

u2( + z,z)= • 

-: [Jo(Z) -cos(Z) 1, --2 

Therefore: 

+iZ) 1 --exp(•=iZ)J0(Z) I(+Z,Z) =exp -•-- 2i 

and its amplitude is 

(27) 

IX(•z,z)l =«œ1+[Jo(Z)12-2cos(Z)Jo(Z)P •. 
(28) 

C. Solution for the illuminated zone (0• <a or 

Since I Y/Z] >l for Of<a, or Ol>rr-ct, the series 
expressed as in Eq. (22) may converge slowly. However, 
the following identities 8 can be used: 

/Y z2\ 

(29) 

[r Z2• 
u(r,z) +vo(r,z), 

where 

rt•O 

oo 

•=o • J2n+•(Z). 
Substituting Eq. (29) into Eq. (17), we have 

(30) 

ß /•z• Y z • 

X [ YO (Y,Z) q- iv I (Y,Z) ] } (31 ) 
and its amplitude is 

,I(Y,Z),=[l+vo2+V,•--2VoCOS •+• ( ) 
[Y Z2•] m --2v• sink•+•-•] . (32) 

•uation (31) is used with •. (17) for calculating the 
pressure dist•bution in the illuminated zone. 

III. GRAPHICAL PRESEHTATIOHS AND DISCIJSSIOH 

Since the pressure distribution depends on the geome- 
try of the transducer and the frequency, it is more conve- 
nient to compare the focusing characteristics if the pres- 
sure distribution is normalized by the pressure at the focal 
point. It is easy to observe that at the focal point Y=0 and 
Z=0. The pressure at the focus, Pfocus, can be found from 
the limiting value of Eqs. (17) and (23) to be 

Pfocus = ipoG•, exp ( -- ikro), ( 33 ) 
where 

ka • ka sin a 

Ge•2ro • 2 (34) 
is the focusing factor of the transducer, and the pressure 
amplitude at the focus is poG•,. 

The normalized pressure distribution is defined as 

p' ( r,O) •p(r,O)/proeu•. (35) 

From Eq. (17) we have 

r02 
p'(r,O) =exp[ --ik(r--r o) ] • -•I( Y,Z). (36) 

A. Pressure distribution in the focal plane 

In the focal plane where 0•=rr/2, Y=0, all but the 
first term in u; vanishes, and u• = 0, therefore 

2 2 2 Jl(ka sin 0) 
• I(0,Z) =•J•(Z) = ka sin 0 (37) 

So the pressure distribution in the focal plane is 

I p•oea•=exp --ikro -- 1 ka tan 0 , (38) 
since ro/r=cos 0. This solution is identical to that given by 
O'Neil 3 when kr0•, 1 is assumed. Using cylindrical coordi- 
nate system as shown in Fig. 1, sin 0 = x/ xx•o, and 
tan O=x/ro, we have in the focal plane 

Zll(ka sin 0) 2J•(kax/ xx•--•o) Ip;o•l-- •'•t•nn•)- I = ka'•-•ro I' (39) 
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FIG. 3. Normalized pressure distribution in the focal plane of a focused 
transducer: (a) sina=0.1, ka=100 (Gp=5); (b} sin•=0.1, ka=300 
(Gp= 15). Dashed lines represent Eq. (40}, the solution by Lucas and 
Muir. 

The pressure distribution in the focal plane has also been 
given by Lucas and Muir 6 as 

2Jl ( ka tan 0) _ Lll ( kax/r o) IPœ.l= - I' (40> 
For Eq. (39) there arc a limited number of zeros 

(pressure nodes) in the focal plane and these zeroes arc at 

x,, z•/ka 

ro--l_(z•M, ka)2, z•,<ka, (41) 
where z•, are the zeros of J• (z). Equation (40), however, 
has an infinite number of zeroes in the focal plane at 

Xn ZI n 

r0--ka, (42) 
The -- 3-dB width of the focal spot in the focal plane from 
Eq. (39) is found to be slightly larger than that given by 
Eq. (40} for small values of ka, and approaches 

2 W_ 3 abe2(1.616ro/ka), (43) 

as given by Eq. (40) for ka•,l. Shown in Fig. 3 are the 
numerical values of Eq. (39) as a function of lateral dis- 
tance x/r o, together with Eq. (40), for sin a----0.1 and ka 
= 10 and 50. The differences between them diminish for 

larger ka, as can be seen in Fig. 3(b). 

B. On the hemispherical surface r=r o 

On the hemispherical surface passing through the focal 
point (r=ro), we find Y=4Gp sin 2 0/2 and 
Y/Z= (a/ro)tan 0/2. Therefore, 

/ a 0\ 2" 

.{(r,z)= (-- l){70 tan s) J2•. l( ka sin O), 
(44) 

o• l a O\ 

u•(r,z)---- Z (--1)"[•tan•) J•+2(kasin0). 
The normalized pressure distribution on this surface is 
therefore 

, ( 20) 2(u•+iu•) 2 -- t2Gp sin • ka sin 0 ' p•=,o=• I(Y,Z) =exp 
(45) 

and its amplitude is 

[a 0\ 2 2 ø) + V00 tan [P;=•ol -ka sin 0 J•(ka sin 
X [J•(ka sin 0)-2 J•(ka sin 0)J3(ka sin 0)] 

+0[[ a 0•41 [•tan •j l} (46) 
For ka•,l, only the first term is significant. This can be 
explained by the fact that in the main lobe, 0 is small 
(•<3.83/ka), thus [(a/ro)tan W2] 2((1.91/kr0)2•1, 
while outside the main lobe, the functional value of ff is 
itself small. Numerical investigation indicates that for 
ka > 1 and sin a < 0.2 the first term in Eq. (46) gives ac- 
curacy better than 10 -•. For most purposes, it is sufficient 
to use the tint term only: 

Z/• (ka sin 0) IP;-'o I • •a •i• • ' (47) 
This is identical to the far field angular distribution func- 
tion for a flat disk transducer. From Eq. (47) the --3-dB 
angular beam spread is 

2a_3 aa----2 arcsin(1.616/ka). (48) 

Figure 4 shows the angular distribution on r=ro, Eqs. 
(46) and (47), for sin a=0.1 and ka= 100. For these pa- 
rameters, the difference between them is much smaller 
than 10 -3. From Eqs. (39) and (47), the pressure distri- 
bution in the focal plane can be treated as the projection of 
the angular distribution onto the focal plane. 

C. On the transducer axis 

On the transducer axis, Y=2Gp(ro/z--1), and Z=0, 
where z has been used in place of r, we have vo(Y,0) = 1, 
Vl(Y,0) =0, and 

2 1 --exp(--iY/2) 
•I(Y,O) - iY/2 

1 --exp[ --iGa(ro/z-- 1 )] 
iG•( ro/z -- 1 ) 

(49) 
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40.0 -s.o o.o 5.0 o.o 

FIG. 4. Normalized pressure distribution on the surface r= r 0 for a fo- 
cused transducer with sin a=0.1 and ka= 100 (Gp=5). 

Therefore the normalized pressure distribution is 

p•xia]=exp[ -ik(z-ro) ] re 1 -exp[ --iGp(ro/z-- 1 ) l z iGp(ro/z-- 1 ) ' 
(5o) 

and its amplitude is 

re sin[ ( G/2 ) ( ro/z--1) ] . 
From Eq. (51) the pressure maximum on the axis occurs 
at 

0.0 1.0 2.0 3.0 4.0 

ka=300 
(b) 

sinot--0.1 

1.2 

1.0- 

0.8' 

0.6' 

0.4 

0.2- 

0.0' 
0.0 1.0 2.0 3.0 4.0 

z# 0 

FIG. 5. Normalized axial pressure distribution of a focused transducer 
with (a) sina=0.1, ka=100 (Go=5); (b) sina=0.1, ka=300 
(Go= 15). Dashed line represent the exact solution Eq. (58). 

zmax 12 / 1 \ 

r0 -- 1--•+O[•). (52) 
This agrees with the result obtained by Lucas and Muir. 6 
Substituting (52) into (51 ), the pressure maximum on the 
axis is 

, [% 2• 6 
Pmax• [-•-+•)sin •> 1. (53) 

Shown in Fig. 5 are the axial pressure distributions as 
a function ofz/r o for sin a=0.1 and ka= 100 (G•,= 5) and 
ka=300 (G•,=16). It is important to notice that beyond 
the focal point, the pressure amplitude decays faster than 
1/z. For G•, > 2,r, pressure amplitude has a finite number of 
zeroes (pressure nodes) beyond the focal point at 

z n 1 

ro_l_2mr/Gv, n=l,2 .... <Gj, (54) 2•" 

For G•, < 2•r no such pressure nodes exist. 
The axial pressure distribution can be obtained with- 

out the use of Fresnel approximation. By letting 0=0 and 
r=z, Eq. (5) becomes 

r'= [z2+2zro(ro/z -- 1 ) ( 1 --cos 00) 1•/2. (55) 

Substituting into Eq. (2), and integrating directly, we have 

gbami=• exp(_ikz ) re 1-exp -ikz 1+-- 
(56) 

Hence, 

-- 1--exp -ikz 1+4% 
z z 

X (-•-- 1)sin2 -•] •/2-- 1 } ) ] (-•-- 1) -• (57) 

and its amplitude is 

(58) 

This is the exact solution of the axial pressure distribution 
and it agrees with the solution by O'Neil. 3 It is easy to 
show that, for z>a, Eq. (58) is reduced to Eq. (51) when 
normalized by pegs,. This can be seen in Fig. 5, where the 
two equations are shown together. The difference between 
them is only visible for z < a. 
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FIG. 6. Normalized pressure distribution on the boundary line for a 
focused transducer with sin ct=O.l, ka= 100 (Go=5) and sin a----O.l, 
ka= 300 (Gp= 15). 

From Eq. (58), the pressure node beyond the focal 
point is actually located at 

z; 1-- (2nrr/ka) 2 G•, 
re-- 1--2nrr/G•, ' n=l,2 .... <•-•. (59) 

Equation (59) also gives all the zeroes before the focal 
point where n=-- 1,--2 .... > --ka/2rr. 

From Eq. (58), the pressure amplitude at the center of 
the transducer (z=0) is 

Iprl =2pol sin(ka/2) I. (60) 

This indicates that the pressure amplitude at the center of 
the transducer varies from 0 to 2Po depending on the value 
of ka. This phenomena has been observed for a flat piston 
transducer? 

D. On the boundary 

On the boundary line separating the shadow and illu- 
minated zones, the normalized pressure amplitude can be 
found from Eqs. (27) and (36) to be 

p•o..a.•=exp{_tkro(• -- a sin 0\ , . r l:e-•-•rø ) } 
r o 1 --exp( :Fika sin O}Jo(ka sin 0) 

X • ika sin 0 (61 ) 
and its amplitude is 

ro 1 
I'o,,nda,yl- r ka sin 0 [l+Jø•(ka sin 0) 

--2 cos(ka sin O)Jo(ka sin 0) ] 1/2. (62) 

Let to be the distance measured from the focal point to the 
observation point along the boundary line, as shown in Fig. 
2, then 

r= (wl + •o+2toro cos a)•/•, 
(63) 

sin 0= I tel sin a/r. 

Figure 6 shows the pressure distribution along the bound- 

ary line for sin a=0.1 and ka=100 and 300. From Eq. 
(62) it can be proven that there are no pressure nodes 
along the boundary line for any values of ka. 

At the edge of the transducer, where r.•a and O•rr/2, 
the pressure amplitude is 

Ip.ag. I • (po/2) [1 +J•(ka) --2 cos(ka)Jo(ka)] !/•. 
(64) 

This expression indicates that the pressure amplitude at the 
edge of the transducer is roughly half of the power equiv- 
alent average pressure radiated from the transducer. Sim- 
ilar phenomena has been observed for a flat piston 
transducer. io 

E. The physical meaning of Po 

Since the pressure near the center of the transducer 
can be twice the value of p0, and the pressure at the edge of 
the transducer is about half the value of p0, the physical 
meaning of Po is desired. The total transmitted acoustic 
power can be computed as 

P 1 ,pl2aS, (65) 
where the integral is chosen to be over the focal plane, 
since an explicit form for the pressure there has been ob- 
tained in Eq. (39). After some manipulation, we have 

2 ff 2A(u) Petra 2-• =o u[1--(u/ka) 21 du. (66) 
For karl, the value of the integral approaches !, and 
P=rra•(p•/2poc). So P0 is the power equivalent average 
pressure over the transducer surface. 

F. Near the focal point 

Equation (17) or (36) together with Eqs. (21), (27), 
and (31) can be used to calculated the pressure amplitude 
for any point in the right half-space. An example is given 
near the focal point of a transducer with sin a----0.1 and 
ka=200. The three-dimensional plot in Fig. 7 reveals the 
complicated pressure pattern just before the focal point. 

IV. PRESSURE DISTRIBUTION OF A FLAT PISTON 
TRANSDUCER 

The pressure distribution of a flat piston transducer 
can be obtained from the solution given above as the lim- 
iting case when the radius of curvature r 0 is taken as infin- 
ity. Then Eq. (15) becomes 

Y= ka2/r, 
(67) 

Z= ka sin 0, 

and the solution of the pressure distribution given in Eq. 
(17) now becomes 

p(r,O) =ipo exp( --ikr) I ( Y,Z). (68) 

Now, since Y/Z=a/rsin O=a/x, where x is the lat- 
eral distance measured from the transducer axis, we have 
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FIG. 7. Normalized pressure distribution near the focal point of a focused 
traducer with sin a=0.1, ka=200. 

FIG. 9. Pressure distribution along the boundary line x=a as a function 
of axial distance z normalized by the Rayleigh distance ka2/2n, for a flat 
disk transducer with ka= 100. Top axis shows the corresponding value of 
z normalized by a. 

y [ <1, shadow zone (x>a), 

X-- [=1' boundary (x=a), (69) > 1, illuminated zone (x<a). 

Similar to the solution for the focused transducer, the so- 
lution is divided into the shadow zone and the illuminated 

zone by a boundary line, in this case, x=a, as shown in 
Fig. 8. Equation (21) is used in the shadow zone, Eq. (31) 
is used in the illuminated zone, and Eq. (27) is used for the 
boundary line. Many of the radiation field properties dis- 
cussed by Pierce 9 can be derived from the above formula- 
tion. 

A. On the transducer axis 

On the axis of the transducer, Z=0, ¾o = l, and Vl=0. 
From Eels. (68) and (31), we have the pressure distribu- 
tion on the axis of the transducer as 

exp(--ikz)[1--exp( 'ka2\] œaxiam =Ro --,-'•'•-) J, (70) 
and its amplitude is given by 

P = 2p0 { sin( ka2/4z} I- (71) 

Shadow zone 

Shadow :,one 

FIG. 8. The definition of illuminated and shadow zones and the boundary 
line for a fiat disk transducer. 

The exact solution of the axial pressure distribution can be 
obtained from Eq. (57) by letting ro-, 

Paxial =P0 exp ( -- ikz) 

and its amplitude is 

Equation (72) is the exact solution of the axial pressure 
distribution and agrees with Pierce 9 and Kinsler et al.l] 
For z>a, Eq. (72) reduces to Eq. (70). At the center of 
the transducer, the pressure amplitude is 
[Pce,ter [ = 2go sin (ka/2), the same as for the focused trans- 
ducer. 

B. On the boundary line 

The pressure amplitude on the boundary x=a can be 
found from Eqs. (68) and (27) to be 

Pc --ikr l---- Pboundary -•' • exp 2r 

X [l--exp(--ika sin O)Jo(ka sin 0)], (74) 

and its amplitude is 

I =? ( l + So ka sin O) 
--2 cos(ka sin O)Jo(ka sin 0)} l/•, (75) 

where sin 0 ----- a/•. Figure 9 shows the pressure 
distribution along the boundary line for ka = 100 as a func- 
tion of z/a. 

At the edge of the transducer, where z=0, the 
pressure amplitude is IP•age[ = (p0/2)[l +Jo2(ka) 
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FIG. 10. Angular pressure distribution of a flat disk transducer with 
ka=!00 at r=ka2/2•r, 2(ka2/2rr), 3(ka2/2rt), and 4(ka•/2•r), where 
ka2/2•r is the Rayleigh distance of the transducer. The dashed line rep- 
resents the function [Zli(ka sin O)/ka sin 0[. 

--2 cos(ka)Jo(ka)] ]/2, which is the same as that for a fo- 
cused transducer and is numerically similar to the solution 
by Pierce? 

C. The far field 

When the observation point is far away from the trans- 
ducer surface (r•ka2/2rr), the pressure distribution be- 
comes relatively simple. The far field can be obtained di- 
rectly from Eqs. (68) and (23), keeping the first term 
only: 

[ ( a2)] ka22J](kasinO) Pfar=P0 exp --ikr 1 +•-• 2r ka sin 0 (76) 
This is the well-known angular distribution pattern of a flat 
transducer, 9J2 when the phase correction --ka2/2r is dis- 
carded. 

D. Angular distribution 

It is import to realize that the far field angular distri- 
bution pattern is valid when the distance from the trans- 
ducer to the observation point is much larger than the 
Rayleigh distance of the transducer (ka2/2rr). This fact is 
demonstrated by Fig. 10, where angular distributions at 
several locations are shown. Equations (21), (27), and 
(31 ) are used with Eq. (68) to calculate these values. The 
dashed line in Fig. 10 is the function 12Ji(kasinO)/ 
ka sin 0[. It is clear that at the Rayleigh distance, the an- 
gular distribution function agrees with the far field angular 
distribution function only within the --3-dB zone, beyond 
which they diverge drastically. As r gets larger, the angular 
distribution function approaches the far field value. This is 
confirmed by Fig. 11, where the pressure distribution near 
the Rayleigh distance is shown. From Fig. 10, a safe dis- 
tance beyond which the far field angular distribution pat- 
tern can be used is r>ka2/2, i.e., •r times the Rayleigh 
distance. 

Ha - L0 •[' -5.0 
-2.0 

FIG. I 1. Pressure distribution of a flat disk transducer with ka= 100 near 

the Rayleigh distance. 

V. NUMERICAL CONSIDERATIONS 

Generally speaking, the computation of Eq. (19), 
(26), or (30) is needed for the pressure distribution of a 
focused or flat disk transducer. Since I Jn (Z) I• 1 for any n, 
the series in Eq. (19) converges faster than 

.o• / y\ 2.+ ! 

, 
and the series in Eq. (30) converges faster than 

noo / Z\ 2n 

•0 

Near the boundary separating the illuminated zone and the 
shadow zone, where I Y/Z[ = 1, the speed of convergence 
depends on the value of Z (and hence, Y). When 
Z I = 1 and Z is small in amplitude, the series in both Eqs. 
(19) and (30) converge rapidly since Jn(Z) is a rapidly 
decreasing function of n for n > Z and is about equal to 
(Z/2)n. When I Y/Z[ = 1 and Z (and hence Y) is not 
small in amplitude, the series in both Eqs. (19) and (30) 
converge slowly and alternative forms are desired. In this 
case, the following identities given in the Appendix [Eqs. 
(A10) and (A11)] are used: 

1 [ . [Z2q -Y2\ . {Z 2_Y2\] 
u,(Y,Z) =• [sm•-•}--Jo( 

.oo [ /z 2 y•\ 
,z 2 

(77) 
1 - -zZ-y 2- 

u2( Y,Z)=• iSo( Y)cos(-•-y ---) 
ß z 2_ ¾21 
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where 

•0 

q--n 1 
cosEn(x)=cos(x)-- • (--1) q 

(78) 

sinE,,(x)=sin(x)-- • (--1) q-- x 2•+•, 
q=0 (2q+l)! 

are the error functions of cos(x) and sin(x) when their 
Taylor expansions are truncated to order n, and an exten- 
sion of the Bessel functions Jn( -- Y) = ( -- 1 )nJ•(Y) has 
been used. Notice that both cos En(x) and sin En(x) are 
decreasing functions of n for n > Ix/21 . It is easy to show 
that Eq. (77) reduces to Eq. (26) for I Y/Z] = 1. 

We now specify that for I Y/ZI <v'2/2 Eq. (19) will be 
used, for [ Y/Z[ >v• Eq. (30) will be used, and for v•'2 
< I Y/ZI < V2 Eq. (78) will be used. For a focused trans- 
ducer, this is about equivalent to v•2a<01g•r--v•2a, 
O•O•(V2/2)a or •r-- (v•/2)a<O•<rc, and 
(V2/2)ct<O•<v• or •r--v•<O•<•'--(v•/2)a, respec- 
tively. For a fiat disk transducer, this is equivalent to 
v•.a<xg •, O<x g ( V•/2 )a, and ( •/2 )a < x < v9.a, respec- 
tively. 

The infinite summations n= • Zn= 0 in all these Eqs. are 
replace by finite summations Zn=o, where N is chosen 
such that the normalized pressure of the focused trans- 
ducer is calculated to within 0.01 accuracy ( --40 dB com- 
pared with the pressure amplitude at focus). Since the nor- 
realized pressure is proportional to 
(2/Y)I(Y,Z) = (2/Y)[u•(Y,Z) +iu2( Y,Z)], we find N by 
inspection of the truncation error. The analysis for the fiat 
disk transducer is similar and will be omitted here. For 

[Y/Z[ <v2/2, inspection of Eq. (19) reveals that trunca- 
tion error is about 

2 /y\2•v+3 12J2/v+a(Z ) y 2•V+2 

and since IZZ+(z)/zI <1, we have g< I Y/zI 
For the range of ] Y/Z I specified, •<0.0o8 for N=6. For 
I Y/ZI >V2, inspection of Eq. (30) reveals that truncation 
error is about 

2 'Z '2•t+• y 

and since 12J2n,+•(Z)/Z] <1, we have •< IZ/Y] 2•r+•. 
For the range of I Y/ZI specified, e<0.006 for N=6. For 
rE/2< I Y/ZI <v2, inspection of FXl. (78) reveals that trun- 
cation error is about 

e=l• 1 [Z2--y2•2N+2 
and since IJ•v+•(Y) l < 2x/-•Y I for I¾1}1, we have 

2N+0.5 e < [1/4*r(2N+2)](l¾1/2) ß for the range of 

specified. For [ YI <4rr and N=7, we find e<0.01. 
The above discussion is only a rough estimate of terms 

needed. The actual number of terms needed is much 

smaller to obtain the degree of precision specified. For ex- 
ample, near the focal plane of a focused transducer and in 
the far field of a flat transducer, where Y is small in am- 
plitude, N=0 is needed to obtain e<0.01. 

Due to the nature of the series solution, recursive 
method should be used to calculate the values of the Bessel 

functions, since values of J•(Z) for roughly n=0 ..... 2N+2 
are needed when any of the three solutions are used. Also, 
since most of the computation time is spent on calculating 
the values of Bessel functions, it is advised that polar co- 
ordinate systems be used. Then for a particular transducer 
(ka=const), the argument for the Bessel functions is a 
constant along the line 0=const, and the numerical values 
of the Bessel functions can be shared along this line. 

The use of recurslye relations to calculate Bessel func- 

tions has been discussed in detail by Abramowitz and 
Stegun? A brief review is given here for completeness. 
The recursive relation is given by (Eq. 9.1.27 in Ref. 13) 

Jn-t (Z) +J•+ I (Z) = {2n/Z)Jn(Z). (79) 

We divide Z into two ranges: 0<Z<3 and 3<Z< oo. For 
0<Z<3, we find that IJ•(Z)[ <3)<10 -8 for any n>13. 
Let J•a(Z) =0 and J•:(Z) = 1 with an unknown scale fac- 
tor, then Eq. (79) is used to calculate J•(Z) for 
n=11,10 ..... 0. The scale factor is found by using (Eq. 
9.1.46 in Reft 13) 

1 =J0(Z) +2J•(Z) +2&(Z) +.-'. (80) 

For 3<Z< oo, the values of J•(Z) and J•(Z) are calcu- 
lated first by (Eqs. 9.4.3 and 9.4.6 in Ref. 13): 

Jo(Z) = (1/•f•) f0 cos(00), 
(81) 

J• (Z) = (1/x/-•) f• cos(01), 
where fo, fi, 0o, and 01 are sixth-order polynomials of 
3/Z given in Ref. 13. Then Eq. (79) is used to calculate 
J,(Z) for n----2,3 ..... 2N+2. 

The errors in the calculated Bessel functions are 

smaller than 1 X 10 -? for both methods. 

VI. CONCLUSION 

A series solution for the pressure distribution of a fo- 
cused transducer is presented. The radiation field is divided 
into two zones: the illuminated zone and the shadow zone. 

Alternative forms for the pressure distribution are pro- 
vided. The solution is numerically convergent for any point 
in the right half-space of the transducer. The pressure on 
the boundary dividing the different zones is given in an 
explicit form. This form is most useful for checking the 
convergence of the series solutions, since they should all 
provide the same value on the boundary. Near the acoustic 
axis and far away from the transducer, numerical values of 
the solution become similar to that given by Lucas and 
Muirfi Near the focal point, numerical values of the solu- 
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TABLE I. Pressure distribution of focused and fiat transducers: Summary of results. 

Transducer 

type Focused transducer Flat disk transducer 

Y=-•-- ( 1 ----r cos 0 ¾=kd/r, Parameters \ ro ' Eq. (15) 
Z= ka sin O. Z= ka sin 0. 

Pressure p( r,O ) =!Po exp(-ikr) I(Y,Z) Eq. (17) 
distribution 1 - r cos O/r o p( r,O) =ipo exp( - ikr)l ( Y,Z). 

Eq. (67) 

Eq. (68) 

• [<1, shadow (a<O•<•r--a), {<1, Zones =1, boundary (01=a or 01=rr--ct), Eq. (25) Y 
>1, illuminated (O•<a or O•<•r-a). Z >1, 

General 

solution 

Shadow 

zone 

Boundary 

Illuminated 

zone 

I(Y,Z) = Y ffi=o Y exp( -- i'• u2 ) uJo( Zu )du 

l( Y,Z)=exp(-i •) [ut( Y,Z) +iu2( Y,Z) ] 
u•( Y,Z), u2( Y,Z) 

(_•) 1--exp(:•iZ)jo(Z) I(+Z,Z) =exp +2i 

[ iZ2 \ Y Z 2 

vo(Y,Z), v• (Y,Z) 

shadow (x>a), 
boundary (x=a), 
illiminated (x <a). 

Eq. (69) 

Eq. (16) 

Eq. (21) 

Eq. (19) 

Eq. (27) 

Eq. (31) 

Eq. (30) 

tion are similar to that given by Williams. lø On the acous- 
tic axis, an exact solution is provided, and this solution 
agrees with that by Williams. to 

The pressure distribution of a ttat disk transducer is 
obtained as a limiting case of the focused transducer. 
Graphical presentation indicates that the far field angular 
distribution function should be used with caution when the 

distance from the transducer to the observation point is not 
much larger than the Rayleigh distance. 

A summary of the main results is provided in Table I. 
Computationally, the series solution given here is more 

advantageous than the integral solutions. Recursive 
method should be used to calculate the values of the Bessel 
functions. 

It is only appropriate for us to point out that the math- 
ematical methods used here to derive the acoustic pressure 
distribution are very similar to the methods used by Born 
and Wolf, TM who discussed the light intensity distribution 
of a focusing lens near the focal point. They defined the 
following two nondimensional parameters to specify the 
spatial location of the observer: 

ka2(z-ro) 
Y' - Z' = kax/r o. 4 ' 

(82) 

Using their procedures on Eq. (2) for the acoustic case, we 
find 

ipo exp( -- ikz) 
p(r,O)-- I( Y',Z'). (83) 

1 --z/r o 

It is now easy to show that the intensity distribution in the 
neighborhood of the focus is symmetrical about the geo- 
metrical focal plane as well as the axis, as Born and Wolf 
have pointed out. 

The parameters Born and Wolf defined are related to 
the parameters we used by 

Y'=- Y(r/ro), Z'=Z(r/ro). (84) 

The differences between them are small only near the focus 
and around the hemispherical surface r= r 0. For other lo- 
cations, we believe our parameters are a better approxima- 
tion. This can be shown by comparing the phase kr' and its 
approximation associated with the definition Y and Z. The 
approximation used by Born and Wolf is intended for the 
focal area only. 

ACKNOWLEDGMENTS 

We would like to thank Professor Edwin L. 

Carstensen of the University of Rochseter for his support 
of this work. Financial support in part by the National 
Institute of Health through Grant No. CA44732 and the 
National Science Foundation through Grant No. 
EEC9209615 is acknowledged. 

APPENDIX: THE COMPUTATION OF LOMMEL 

FUNCTIONS FOR I Y/ZI • 1 

The general definition of Lommel function of order s is 
oo 

n=0 • J2n+s(Z). (A1) 
By Taylor's theorem, we have 
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us( Y, Zo.-[-AZ): • c')qus( Y'Zø) q=O 3zq ( AZ)q' (A2) 

Using the partial derivatives of us(Y,Z) given by Gray and 
Mathews, 8 we have 

us( Y, Zo+ AZ) = • (-- 1)qx ( AZ)q(2Zo-I-AZ)q 
q=O q!( 2 Y)q 

X us+q( Y, Zo). (A3) 

Let Z=Zo+AZ, and Z0----Irl, then AZ=Z--Irl, and 
Eq. (A3) becomes 

[Z 2_ y2\q 

u•(Y,Z)= • (--1)q• ['•-•) us+q(Y,[Y[). 
q=O (A4) 

The functions us(Y,I YI ) are special cases of Eq. (A1), 
and can be expressed as 

J Jo( Y) +cos(Y) 
u2s(Y'lYI)=(-1) • 

tl=S-- 1 - Z (--1)•J•.(r) , 
(AS) 

s/Sin(Y) 
u2s+l(r'lr[)=(--1) • 

- • (-1)%•+t(Y) , 

where the natural extension of the Bessel functions of neg- 
ative argument has been used: 

J•- ¾)=(-1)%( Y). (A6) 

Equation (AS) is an extension of the results for us( Y, Y) 
given by Gray and Mathews and can be derived from Eq. 
(26). 

Substituting Eq. (AS) into Eq. (A4), and rearranging 
terms, we have 

and 

s/sin(y) n=s-• 
,,:$+,(Y,Z)=(-1) [ 5 Z n=O \ /z:- ¾2\ ( +(-:)s So(r)+cos(r) 2 

\ [ (z2-r: I 
ß {z:-r2•], 

[ z 2- r:• ], 

(A7) 

(A8) 

where Let s=0 in Eq. (A7) and s=l in Eq. (A8); we have 
the Lommel functions needed in Secß V: 

q=n 1 

cosEn(x)=cos(x)-- Z (--1) q •o (•q),. 
q=n 1 

sinEn(x)=sin(x)-- • (--1)q-- x 2q+l 
q=O (2q+l)! 

(A9) 

are the error functions of cos(x) and sin(x) when their 
Taylor expansions are truncated to order n. Equation (26) 
and the Taylor expansions of cos(x) and sin (x) have been 
used repeatedly to obtain the final form in Eqs. (A7) and 
(AS). and 

(A10) 
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